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Big Data in Climate

• Satellite Data
– Spectral Reflectance
– Elevation Models
– Nighttime Lights
– Aerosols

• Oceanographic Data
– Temperature
– Salinity
– Circulation

• Climate Models
• Reanalysis Data
• River Discharge
• Agricultural Statistics
• Population Data
• Air Quality
• …

Source:	NCAR

Source:	NASA
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– Salinity
– Circulation

• Climate Models
• Reanalysis Data
• River Discharge
• Agricultural Statistics
• Population Data
• Air Quality
• …

Source:	NCAR

Source:	NASA

“Climate	change	research	is	now	
‘big	science,’	comparable	in	its	
magnitude,	complexity,	and	societal	
importance	to	human	genomics	and	
bioinformatics.”
(Nature	Climate	Change,	Oct	2012)
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Pattern	Mining:	
Monitoring	 Ocean	Eddies
• Spatio-temporal	 pattern	 mining	using	novel	

multiple	 object	 tracking	algorithms
• Created	 an	open	source	data	base	of	20+	years	of	

eddies	and	eddy	tracks

Extremes	and	Uncertainty:	
Heat	waves,	heavy	rainfall
• Extreme	value	theory	 in	space-time	and	

dependence	 of	extremes	 on	covariates
• Spatiotemporal	 trends	 in	extremes	 and	

physics-guided	uncertainty	
quantification

Relationship	mining:	
Seasonal	hurricane	activity
• Statistical	method	 for	automatic	inference	 of	

modulating	 networks
• Discovery	of	key	factors	and	mechanisms	

modulating	 hurricane	 variability

Sparse	Predictive	Modeling:	
Precipitation	 Downscaling
• Hierarchical	 sparse	regression	 and	multi-task	

learning	with	 spatial	smoothing
• Regional	climate	predictions	 from	global	

observations

Network	Analysis:	
Climate	 Teleconnections
• Scalable	method	 for	discovering	related	 graph	

regions
• Discovery	of	novel	climate	teleconnections
• Also	applicable	 in		analyzing	brain	fMRI	data

Change	Detection:	
Monitoring	 Ecosystem	Distrubances
• Robust	 scoring	techniques	 for	identifying		diverse	

changes	in	spatio-temporal	 data	
• Created	 a	comprehensive	catalogue	of	global	changes	in	

surface	water	and	vegetation,	 e.g.	fires	and	
deforestation.

Five Year, $ 10m NSF Expeditions in Computing Project (1029711, PI: Vipin Kumar, U. Minnesota)
Understanding Climate Change: A Data-driven Approach
Research Highlights

http://climatechange.cs.umn.edu/4/20/16 4



Big Data in Earth System Monitoring

A vegetation index measures the 
surface “greenness” – proxy for total 

biomass
This vegetation time series
captures temporal dynamics 
around the site of the China 
National Convention Center

Data Type Coverage Spatial
Resolution

Temporal	
Resolution

Spectral	
Resolution

Duration Availability

MODIS Multispectral Global 250	m Daily 7 2000	- present Public

LANDSAT Multispectral Global 30	m	 16 days 7 1972	- present Public

Hyperion Hyperspectral Regional 30	m 16	days 220 2001	- present Private

Sentinal - 1 Radar Global 5	m 12	days - 2014	- present Public

Quickbird Multispectral Global 2.16 m 2	to	12 days 4 2001	- 2014 Private

WorldView - 1 Panchromatic Global 50	cm 6	days 1 2007	- present Private

MODIS covers	~	5	billion	 locations	 globally	
at	250m	resolution	daily	since	Feb	2000.

Longitude

Latitude

Time

grid cell
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Monitoring Global Change: Case Studies
1. Global mapping of forest fires:

q RAPT:	Rare	Class	Prediction	in	Absence	of	Ground	Truth

2. Global mapping of inland surface water dynamics
q Heterogeneous	Ensemble	Learning	and	Physics-guided	Labeling

Challenges
• Presence of noise, missing values, and         

poor-quality data
• Lack of representative ground truth
• High temporal variability
• Spatio-temporal auto-correlation
• Spatial and temporal heterogeneity
• Class imbalance (changes are rare events)
• Multi-resolution, multi-scale nature of data
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Case Study 1: 
Global Forest Fire Mapping
RAPT: Rare Class Prediction in 

Absence of True Labels



Global Forest Fires Mapping

Monitoring fires is important for climate change impact

State-of-the-art: NASA MCD64A1
• Most extensively used global fire monitoring product
• Uses MODIS surface reflectance and Active Fire data in a predictive model
• Performance varies considerably across different geographical regions
• Known to have very low recall in tropical forests that play a critical role in

regulating the Earth’s climate, maintaining biodiversity, and serving as carbon sinks 

A	record	number	of	more	than	130	countries	
will	sign	the	landmark	agreement	to	tackle	
climate	change	at	a	ceremony	at	UN	
headquarters	on	22	April,	2016.

“the	best	chance	to	save	
the	one	planet	we	have"

8



Predictive Modeling:
Traditional Paradigm

Explanatory
Variable	

Target	Label

1

0

0

1

. .

1

Learn a classification function

which generalizes well on 
unseen data that comes from 
the same distribution as 
training data.
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Predictive Modeling for 
Global Monitoring of Forest Fires

Challenges:

(1) Complete	absence	of	target	labels	for	supervision
(however,	imperfect	annotations	of	poor	quality	labels	are	available	for	every	sample)

Variations in the relationship between the explanatory and target variable
• Geographical heterogeneity
• Seasonal heterogeneity
• Land class heterogeneity 
• Temporal heterogeneity

Global	availability	of	labeled	samples	
for	burned	 area	classification

?

?

?
4/20/16 10



Challenges:

(1) Complete	absence	of	target	labels	for	supervision					
(however,	imperfect	annotations	 of	poor	quality	labels	are	available	for	every	sample)

(2) Highly	imbalanced	classes

True	Positive	Rate	=	0.9							
False	Positive	Rate =	0.01

skew
0

1 recall

precision

For	eg.			California	State

Year	2008	(experienced	maximum	
fire	activity	in	last	decade)

1,000	sq.	km.	of	 forests	burned
out	of	a	total

1,000,000	sq.	km.	forested	area
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Global Monitoring of Forest Fires



Challenges:

(1) Complete	absence	of	target	labels	for	supervision	
(however,	imperfect	annotations	 of	poor	quality	labels	are	available	for	every	sample)

(2) Highly	imbalanced	classes

(3) How	to	evaluate	performance	of	a	model	
using	imperfect	labels?

Global	availability	of	labeled	samples	
for	burned	 area	classification
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Predictive Modeling for Fire Monitoring

State-of-the-art:	NASA	MCD64A1

- Domain	heuristics	and	hand-crafted	rules	
to	identify	high	quality	training	samples

- Well	known	to	have		poor	performance	 in	
the	tropical	forests.

Challenges:
(1) Complete	absence	of	target	labels	for	supervision	

(however,	imperfect	annotations	 of	poor	quality	labels	are	available	for	every	sample)
(2) Highly	imbalanced	classes
(3) How	to	evaluate	performance	of	a	model	using	imperfect	labels?

Our	Approach:	RAPT 1

- Trains	classifiers	using	 imperfect	labels
o Under	certain	assumptions,	 performance	is	

comparable	to	classifiers	trained	on	expert-
annotated	samples.

- Combines	 information	 in	classifier	output	
and	imperfect	labels	to	jointly	maximize	
precision	and	recall

- Automatically	identifies	 regions	of	poor	
performance.	4/20/16 13

1	Mithal (PhD	Dissertation)



Global Monitoring of Fires in Tropical 
Forests

571 K sq. km. burned area found in tropical forests 

● more than three times the total
area reported by state-of-art
NASA product: MCD64A1.

Fires in tropical forests during 2001-2014

RAPT
(571	K)

MCD64A1
(186	K)

126	K 60K

445	K
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Validation

Before Fire Event After Fire Event

Sudden	drop	followed	by	recovery	is	a	
key	signature	of	forest	fires

Burn	scar	in	Landsat	composite

Change	in	Vegetation	series

RAPT MCD64A1

Landsat	false-color	composite	shows	the	scar	
after	the	fire	event	identified	by	RAPT

Multiple	lines	of	evidence	
indicate	that	RAPT-only	
points	are	actual	forest	fires

4/20/16 15



Validation

Before Fire Event After Fire Event

Synchronized	drop	followed	by	recovery	
is	a	key	signature	of	forest	fires

Burn	scar	in	Landsat	composite

Change	in	Vegetation	series

RAPT MCD64A1

Landsat	false-color	composite	shows	the	scar	
after	the	fire	event	identified	by	RAPT

Multiple	lines	of	evidence	
indicate	that	RAPT-only	
points	are	actual	forest	fires
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Active Deforestation Fronts in Amazon

Google	Earth	Image:	
Year	2002

Google	Earth	Image:	
Year	2015 RAPT	detection	2002-2014

(RAPT	only, Common)

Burn	Detection																																																B									B								B
Land	cover											F										F								F										F									F									F								F							N										N								N								N							N								N
Year		 2002				2003			2004			2005			2006			2007			2008			2009			2010			2011			2012			2013			20144/20/16 17



Palm Oil Plantations in Indonesia

4/20/16 2016 NSF BIGDATA PI MEETING 18

“A	world-class	biodiversity	hotspot...	
but	palm	oil	expansion	is	destroying	this	
unique	place.”	– Leonardo	DiCaprio

Number	of	500	m	pixels	in	forests	that	were	
identified	as	burned	and	converted	to	plantations1

in	Indonesia	from	years	2001	to	2013.

1Plantation	maps	obtained	from	Global	Forest	Watch



Case Study 2: 
Global Mapping of Surface Water Dynamics

Heterogeneous Ensemble Learning and 
Physics-guided Labeling

http://z.umn.edu/monitoringwater



Importance	of	Monitoring	Global	Surface	Water	Dynamics

Cedo Caka Lake
in Tibet, 1984

Cedo Caka Lake
in Tibet, 2011

Shrinking	of	Aral	Sea	since	1960s
Aral Sea in 2014Aral Sea in 2000

Melting	of	glacial	lakes	in	Tibet 204/20/16



Importance	of	Monitoring	Global	Surface	Water	Dynamics

Cedo Caka Lake
in Tibet, 1984

Cedo Caka Lake
in Tibet, 2011

Shrinking	of	Aral	Sea	since	1960s
Aral Sea in 2014Aral Sea in 2000

Melting	of	glacial	lakes	in	Tibet 21

Opportunity	in	using	Remote	Sensing	Data
• Multi-spectral	data

§ MODIS	(at	500m,	 from	2000)
§ Landsat	(at	30m,	from	1970s)

• Can	be	used	to	classify	every	location	at	a	given	
time	as	water	or	land	(binary	classes)

• Ground	 truth	on	specific	dates	available	from	
various	sources:	SRTM,	GLWD

4/20/16



Challenges	for	Traditional	Big	Data	Methods	in	Monitoring	Water

• Challenge	1:	Heterogeneity	in	
space	and	time

– Water	and	land	bodies	look	different	
in	different	regions	of	the	world

– Same	water	body	can	look	different	
at	different	time-instances

Great Bitter Lake, Egypt Lake Tana, Ethiopia Lake Abbe, Africa

Mar Chiquita Lake, Argentina in 2000 (left) and 2012 (right)

• Challenge	2:	Data	Quality

– Noise:	clouds,	shadows,	
atmospheric	disturbances

– Missing	data

Poyang Lake, China 
(Pink	color	shows	missing	data)224/20/16



Method	Innovations	for	Monitoring	Water

• Ensemble	Learning	Methods	for	
Handling	Heterogeneity	in	Data	1,2

P1

P2

P3

Positive	Modes
(Water)

Negative	Modes
(Land)

N1

N2

N3

• Using	Physics	Guided	Labeling	
to	Handle	Poor	Data	Quality3,4

Elevation								A	>	B	>	C	>	D

Learn	an	ensemble	of	classifiers	to	distinguish	 b/w	
different	pairs	of	positive	and	negative	modes

Use	elevation	information	 to	constrain	
physically-consistent	labels

3	Khandelwal et	al.	ICDM	2015
4	Mithal (PhD	Dissertation) 23

1 Karpatne	et	al.	SDM	2015
2 Karpatne	et	al.	ICDM	20154/20/16



A	Global	Water	Monitoring	System	
http://z.umn.edu/monitoringwater

• Summary	of	Capabilities:
– Maps	the	dynamics	of	all	major	water	bodies															
(surface	area	>	2.5	km2)	in	the	last	15	years	across	the	world

– Finds	changes	in	river	morphology	(river	meandering,	delta	
erosion)

– Detects	the	construction	of	new	dams	and	reservoirs
– Demonstrates	strong	relationships	b/w	surface	water	and	
ground	water	detected	by	GRACE

244/20/16 2016	NSF	BIGDATA	PI	MEETING



Global	Maps	of	
Water	Bodies

Every	blue	dot	is	a	water	body,	
present	in	the	last	15	years,	
with	size	greater	than	2.5	km2

254/20/16



Showing	Surface	Water	Dynamics

Don	Martin	Dam,	Mexico
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Low % of Missing Values

Medium % of Missing Values

High % of Missing Values

Surface	area	of	water	around	Don	Martin	Dam	across	time

Annual	 Landsat	Time-lapse	of	this	region	
(Courtesy:	Google	Earth	Engine)
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Regions	of	Change	
in	South	America

Red	Dots	(Water	Gain):
Region	of	size		>	2.5	km2 that	have	changed	
from	land	to	water	in	the	last	15	years

Green	Dots	(Water	Loss):
Region	of	size		>	2.5	km2 that	have	changed	
from	water	to	 land	in	the	last	15	years
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Low % of Missing Values
Medium % of Missing Values
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Example	time	series	of	a	Water	Gain	region

Example	time	series	of	a	Water	Loss	region 274/20/16



Examples	of	Change:	Shrinking	Water	Bodies

Aggregate	dynamics	of	all	green	dots	shown	on	left
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(Green	dots	show	regions	changing	 from	water	to	land	in	last	15	years)

Annual	Time-lapse	of	an	example	green	dot
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Examples	of	Change:	River	Meandering
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(Adjacent	occurrence	of	Water	Gain	(red) and	Water	Loss	(green) regions	all	along	
the	river	indicate	the	displacement	of	water	from	the	green	dots	to	the	red	dots)

Zoomed-in	View

Example	time	series	of	a	Water	Gain region	

Example	time	series	of	a	Water	Loss region	

1

Time-lapse	of	1

2

Time-lapse	of	2
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Examples	of	Change:	Delta	Erosion

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

150

200

250

N
u

m
 o

f 
W

a
te

r 
P

ix
e

ls
 a

t 
5

0
0

m

Time

 

 

Low % of Missing Values

Medium % of Missing Values

High % of Missing Values

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

150

200

250

300

350

400

450

500

N
u
m

 o
f 
W

a
te

r 
P

ix
e
ls

 a
t 
5
0
0
m

Time

 

 

Low % of Missing Values
Medium % of Missing Values
High % of Missing Values

(Water	Gain and	Water	Loss	regions	appear	on	the	coastline,	due	to	displacement	of	sediments	around	river	deltas)

Zoomed-in	View

Example	time	series	of	a	Water	Gain region	Example	time	series	of	a	Water	Loss region	

Annual	time-lapse	of	region	shown	on	right
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Examples of	Change:	Dam Constructions

• Construction	of	a	dam	characterized	by	a	
sudden	and	persistent	increase	in	surface	area
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Global	Reservoir	and	Dam	(GRanD)	
Database:

• A	data	curation initiative	by	Global	
Water	System	Project	(GWSP)

• Finds	dams	constructed	after	2001:	
• (65 globally;	12 in	Brazil)

UMN	Approach:
• Finds	 (458 globally;	134 in	Brazil1)

1Prepared	in	collaboration	with	Juan	
Carlos,	Planetary	Skin	Institute

4/20/16 2016	NSF	BIGDATA	PI	MEETING



Examples of	Change:	Dam Constructions
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Global	Reservoir	and	Dam	(GRanD)	
Database:

• A	data	curation initiative	by	Global	
Water	System	Project	(GWSP)

• Finds	dams	constructed	after	2001:	
• (65 globally;	12 in	Brazil)

UMN	Approach:
• Finds	 (458 globally;	134 in	Brazil1)

1Prepared	in	collaboration	with	Juan	
Carlos,	Planetary	Skin	Institute

Only	GRanD (5)
Mining
(10)

GRanD &	UMN
(7)

Reported	
by	CBDB
(44)

Agriculture	
Dams	(32)

Hydro
Dams	(41)

4/20/16 2016	NSF	BIGDATA	PI	MEETING



Aggregate	Trends	in	Surface	Water	Dynamics

Surface	Water	Dynamics	in	Amazon

Surface	Water	Dynamics	in	NE	Brazil
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Correlations	with	GRACE	
GRACE:	Gravimetry Recovery	and	Climate	Experiment
• Measures	changes	in	total	water	mass	(surface	+	groundwater)	at	~100	

km

Correlations	b/w	surface	water	dynamics	and	GRACE	measurements



Correlations	with	Precipitation	
TRMM:	Tropical	Rainfall	Measuring	Mission (available	at	~25	km)

Correlations	b/w	surface	water	dynamics	and	TRMM	measurements



Potential	Use	Cases	of	a	Water	Monitoring	System

• Quantifying	water	storage	variations	for	all	surface	water	bodies
– Producing	volume	estimates	of	large	lakes	and	reservoirs	by	integrating	

surface	area	extents	with	surface	height	measurements

• Building	a	comprehensive	database	of	dams	and	reservoirs	
constructions	at	a	global	scale

• Studying	the	interactions	between	surface	water	dynamics	and	land	
cover	changes,	especially	in	the	context	of	food-energy-water	systems

• Mapping	the	dynamics	of	rivers	and	estimating	their	discharge	at	a	
global	scale	using	fine-resolution	Landsat	data

• Integrating	fine-scale	information	about	surface	water	dynamics	in	
hydrological	models	at	regional	to	global	scales

364/20/16 2016	NSF	BIGDATA	PI	MEETING



Pattern	Mining:	
Monitoring	 Ocean	Eddies
• Spatio-temporal	 pattern	 mining	using	novel	

multiple	 object	 tracking	algorithms
• Created	 an	open	source	data	base	of	20+	years	of	

eddies	and	eddy	tracks

Extremes	and	Uncertainty:	
Heat	waves,	heavy	rainfall
• Extreme	value	theory	 in	space-time	and	

dependence	 of	extremes	 on	covariates
• Spatiotemporal	 trends	 in	extremes	 and	

physics-guided	uncertainty	
quantification

Relationship	mining:	
Seasonal	hurricane	activity
• Statistical	method	 for	automatic	inference	 of	

modulating	 networks
• Discovery	of	key	factors	and	mechanisms	

modulating	 hurricane	 variability

Sparse	Predictive	Modeling:	
Precipitation	 Downscaling
• Hierarchical	 sparse	regression	 and	multi-task	

learning	with	 spatial	smoothing
• Regional	climate	predictions	 from	global	

observations

Network	Analysis:	
Climate	 Teleconnections
• Scalable	method	 for	discovering	related	 graph	

regions
• Discovery	of	novel	climate	teleconnections
• Also	applicable	 in		analyzing	brain	fMRI	data

Change	Detection:	
Monitoring	 Ecosystem	Distrubances
• Robust	 scoring	techniques	 for	identifying		diverse	

changes	in	spatio-temporal	 data	
• Created	 a	comprehensive	catalogue	of	global	changes	in	

surface	water	and	vegetation,	 e.g.	fires	and	
deforestation.

Five Year, $ 10m NSF Expeditions in Computing Project (1029711, PI: Vipin Kumar, U. Minnesota)
Understanding Climate Change: A Data-driven Approach
Research Highlights

http://climatechange.cs.umn.edu/4/20/16 37

Highlights:
• Highly	inter-displicinary
• Computer	 science,	 hydrology,	Earth	sciences,	

statistics,	 civil	engineering
• Dozens	of	publications	(journals,	conferences,	

and	workshops) with	authors	from	multiple	
disciplines

• Papers	in	Nature	and	Nature	Climate	 Change
• Public	release	of	software	&	data	products
• Advances	in	computer	science	driven	by	Earth	

science	applications
• Advances	in	Earth	sciences	using	computer	

science	methods
• Development	of	physics-guided	data	mining	

paradigm



Concluding Remarks

• Big data techniques hold great promise for increasing our 
understanding of the Earth’s climate and environment.

• Domain theory can be used to guide the process of 
knowledge discovery in scientific data
– “Theory-guided Data Science”

• Methods have applicability across diverse domains:
– Ecosystem management
– Epidemiology
– Geospatial Intelligence 
– Neuroscience

4/20/16 2016 NSF BIGDATA PI MEETING 38
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